Mutiertes Gen lässt Nervenzellen sterben

10.03.2013

Forscher identifizieren neuen Mechanismus für Entstehung unheilbarer Nervenkrankheit Der britische Astrophysiker Stephen Hawking ist der wohl bekannteste Patient mit der Diagnose amyotrophe Lateralsklerose (ALS), auch bekannt als Lou-Gehring-Syndrom, einer fortschreitenden Erkrankung des Nervensystems, die unweigerlich zum Abbau der Körpermuskulatur und in fast allen Fällen zum Tod führt. Forscher am Wiener Institut für Molekulare Biotechnologie (IMBA) der Österreichischen Akademie der Wissenschaften (ÖAW) haben nun einen völlig neuen Mechanismus für die Entstehung von Erkrankungen der Motoneuronen identifiziert. Ihre Erkenntnisse könnten der Grundstein zur Entwicklung möglicher Therapien für diese bisher unheilbaren Erkrankungen sein.

Die Arbeit "CLP1 links tRNA metabolism to progressive motor-neuron loss” wurde am 10. März 2013, als Full Article in der Fachzeitschrift "Nature" publiziert.

Genfunktion erstmals im lebenden Organismus nachgewiesen

Die IMBA Wissenschafter rund um Josef Penninger und Javier Martinez haben in Zusammenarbeit mit einer internationalen Forschergruppe einen völlig neuen, fundamentalen Mechanismus entdeckt, wie sogenannte Motoneuronen – Nervenzellen, die für die Reizweiterleitung und Stimulierung der Muskulatur verantwortlich sind, absterben. Der Verlust dieser Motoneuronen in Mäusen, welche eine genetische Mutation in einem Gen namens CLP1 haben, führt zu schweren, fortschreitenden Muskellähmungen und eventuell zum Tod.

„Wir arbeiten seit langer Zeit daran, die Funktion des CLP1 Gens in einem lebenden Organismus aufzuklären. Um dies zu tun, entwickelten wir Mausmodelle, in denen die Funktion von CLP1 genetisch inaktiviert wurde.  Völlig unerwartet haben wir entdeckt, dass eine Inaktivierung von CLP1 Zellen anfälliger für oxidativen Stress macht, was zu einer erhöhten Aktivität des Proteins p53 und in Folge zur unwiderruflichen Zerstörung von Motoneuronen führt“, erklärt Toshikatsu Hanada, Postdoc bei Josef Penninger und, gemeinsam mit Stefan Weitzer, Erstautor der Studie.

Stephen Hawking als berühmtester Patient

Erkrankungen der Motoneuronen (Motor Neuron Diseases-MNDs), wie amyotrophe Lateralsklerose (ALS) oder spinale Muskelatrophie (SMA), sind chronische Erkrankungen des zentralen Nervensystems. Dabei kommt es zu einer Schädigung der motorischen Nervenzellen im Gehirn und Rückenmark. Die Nerven regen die Muskeln nicht mehr zur Bewegung an. Der Abbau der Nervenzellen äußert sich in erster Linie als Muskelschwäche und Muskelschwund, sowie in Schluck- und Sprachproblemen. Stephen Hawking erhielt die Diagnose bereits vor 50 Jahren. Aber nicht alle Patienten mit ALS leben so lange mit der Erkrankung. Für ALS Patienten gibt es derzeit keine Behandlungsmöglichkeiten. Fast alle Patienten sterben nach einigen Jahren an einer Lähmung der Atemmuskulatur.

Völlig neuer Krankheitsmechanismus

Die Wissenschafter rund um den IMBA Gruppenleiter und Mitautor der Studie Javier Martinez sind Spezialisten auf dem Gebiet der Erforschung von Ribonukleinsäure (RNA) und hatten in einer früheren Studie das Gen CLP1 entdeckt (publiziert in Nature 2007). Die genaue Funktion von CLP1 in RNA Biologie war bisher unklar. „Durch die Inaktivierung von CLP1 haben wir eine bis dato unbekannte RNA Spezies entdeckt“, beschreibt Javier Martinez die wissenschaftliche Relevanz der Arbeit. „Die Ansammlung dieser RNA ist eine Folge von erhöhtem oxidativen Stress in der Zelle. Wir betrachten dies als einen Auslöser für den Abbau der motorischen Nervenzellen, wie er bei ALS und anderen Nervenkrankheiten vorkommt. Unsere Erkenntnisse beschreiben dadurch einen völlig neuen Entstehungsmechanismus neuronaler Erkrankungen.“ 

Bahnbrechende Erkenntnis für Erkrankungsentstehungen

Josef Penninger, wissenschaftlicher Direktor am IMBA und Mitautor der Studie, ist von der Erkenntnis seiner Forscher begeistert: „Die Rolle von CLP1 bei der Entstehung von Erkrankungen der Motoneuronen stellt ein völlig neues Prinzip dar, wie Erkenntnisse aus der RNA Forschung bisher unbekannte biologische Reaktionen auf oxidativen Stress aufdecken können. Fast alle genetischen Mutationen, die bisher in ALS Patienten gefunden wurden, betreffen entweder den RNA Metabolismus oder oxidativen Stress. Unsere Arbeit könnte den langgesuchten ‚Missing Link‘ entdeckt haben, wie diese beiden biologischen Systeme kommunizieren und bei Veränderungen unheilbare Erkrankungen wie ALS auslösen“.  

Stefan Weitzer sieht in den Ergebnissen großes Potenzial für die Zukunft: „Wir haben einen neuartigen Mechanismus entdeckt, der zu neuronalem Zellsterben führt. Möglicherweise kann man dieses Prinzip auch in anderen Krankheiten finden und mit den gewonnenen Erkenntnissen die Entwicklung von Therapien für bisher unheilbare Erkrankungen vorantreiben. In unserer Arbeit beschreiben wir auch, dass das Protein p53 den Verlust von Motoneuronen reguliert. Eine Inaktivierung von p53 rettet CLP1-mutierte Mäuse vor dem sicheren Tod“. Gelingt es, diese Erkenntnis auf Menschen zu übertragen, hätten die Forscher eventuell einen Therapieansatz entdeckt, um ALS und ähnliche Erkrankungen zu heilen. Dazu brauche es zukünftig aber noch zusätzliche Studien, betonen die Autoren.

Die Studie entstand in Zusammenarbeit mit Forschergruppen der Medizinischen Universitäten Wien und Innsbruck, des Universitätsklinikums Hamburg-Eppendorf, der Harvard Medical School, des Harvard Stem Cell Instituts, des Boston Children’s und Massachusetts General Hospitals, der Keio University School of Medicine (Tokyo), der Oita Universität (Japan) und des Weizmann Institute of Science in Rehovot (Israel). Ein besonderer Dank geht an Ruth Herbst vom Zentrum für Hirnforschung der Medizinischen Universität Wien.

 

Erklärungen:

1) CLP1: = Cleavage and Polyadenylation Factor 1; Eine Kinase (Enzym – zuständig für die Weiterleitung von Signalen in Zellen), die für den Anhang von Phosphatresten an transfer RNAs (Schnittstellen zwischen Erbgut und Proteinen) verantwortlich ist.

2) oxidativer Stress: Führt zu einer Schädigung der Zellen und des Erbguts und ist an Alterungsprozessen beteiligt. Die normale Reparatur- und Entgiftungsfunktion der Zellen wird überfordert.

3) p53: Ein Protein, das in vielen Typen von entarteten Zellen (z.B. bei Krebs) mutiert ist. Es spielt eine Rolle im Bremsen des Zellzyklus und beim Einleiten des Zelltodes.

The Vienna Biocenter in the third district of Vienna has established itself as the premier location for life sciences in Central Europe and is a world-leading international bio-medical research center.

 

visit the Website